
Extension Answers

1 Which of the following equations has an enthalpy change equal to the negative lattice enthalpy for potassium chloride?

	A C	$\begin{array}{rcl} \mathrm{KCl}_{(\mathrm{s})} \rightarrow k \\ \mathrm{KCl}_{(\mathrm{g})} \rightarrow k \end{array}$			B D			~
2	The e	nthalpy chan	ige for th	ne process repres	sented by	the equation	Na _(s) -	$\rightarrow \text{Na}^+_{(g)} + e^-$ is equal to
	A B C D	the sum of t the sum of t	he electi he first i	nergy of sodium on affinity and onisation energy onisation energy	the entha y and the	electron affinit	y of sodi	
3	Whiel	h one of the	reactions	s listed below re	presents	the electron affi	nity of c	hlorine?
		$Cl_{(g)} \rightarrow 0$ $Cl_{(g)} + e^{-1}$				$Cl^{+}_{(g)} + e^{-} \rightarrow l_{2}^{2}Cl_{2(g)} +$		
4	Whic	h of the follo	wing eq	uations correctly	/ represe	nts the standard	enthalpy	change of atomisation of oxygen gas?
		$O_{2(g)} \rightarrow 2O$ $\frac{1}{2}O_{2(g)} \rightarrow 0$		B D		$\rightarrow O^{+}_{(g)} + O^{-}_{(g)}$ $3O_{(g)}$		
5	For which one of the following is ΔH^{e} of the reaction numerically equal to the lattice energy of amm chloride?							the lattice energy of ammonium
	A C	(0)		$^{1/2}Cl_{2(g)} \rightarrow NH_40$ - $4H^+_{(g)} + Cl^{(g)}$		<mark>B</mark> D	NH4 ⁺ (g NH4Cl	$(g) + Cl^{-}_{(g)} \rightarrow NH_4Cl_{(s)}$ $(g) \rightarrow NH_4Cl_{(s)}$
6	Whiel	h of the follo	wing cla	asses of reaction	always l	nave an endothe	rmic ent	halpy change?
		I atomis	ation	II	ionisat		III	solution
	А	I only	В	II only		III only	D	I and II only
7	Whiel	h of the follo	-	ould lead to mor	e exother		-	
		T TT' 1	1					、 •
	•	-	charges		C	e	sizes of	
o		I only	В	II only		Both I and II	D	Neither I nor II
8	Whic	I only h one of the :	B followin	II only g has the most e	xotherm	Both I and II ic crystal lattice	D enthalpy	Neither I nor II /?
8 9	Which A The la	I only h one of the : NaF attice energie	B followin B es (entha	II only g has the most e CsI lpies) of rubidiu	xotherm C m fluorio	Both I and II ic crystal lattice MgF ₂ de (RbF) and ca	D enthalpy D esium ch	Neither I nor II /? MgCl ₂ lloride (CsCl) are -760 kJ mol ⁻¹ and
	Which A The la -650 l	I only h one of the r NaF attice energie cJ mol ⁻¹ resp	B followin B es (entha ectively.	II only g has the most e CsI lpies) of rubidiu What is the latt	xotherm C m fluorio ice energ	Both I and II ic crystal lattice MgF ₂ de (RbF) and car gy of caesium flu	D enthalpy D esium ch uoride (C	Neither I nor II /? MgCl ₂ loride (CsCl) are -760 kJ mol ⁻¹ and CsF) likely to be?
	Which A The la -650 l A	I only h one of the the NaF attice energies (J mol ⁻¹ resp -620 kJ mol	B followin B es (entha ectively.	II only g has the most e CsI lpies) of rubidiu What is the latt B -720 k	xothermi C m fluorio ice energ J mol ⁻¹	Both I and II ic crystal lattice MgF ₂ de (RbF) and car gy of caesium flu C -760 k	D enthalpy D esium ch uoride (C J mol ⁻¹	Neither I nor II /? MgCl ₂ lloride (CsCl) are -760 kJ mol ⁻¹ and
9	Which A The la -650 H A For w	I only h one of the the NaF attice energies (J mol ⁻¹ resp -620 kJ mol	B followin B es (entha ectively.	II only g has the most e CsI lpies) of rubidiu What is the latt B -720 k	xothermi C m fluorio ice energ J mol ⁻¹	Both I and II ic crystal lattice MgF ₂ de (RbF) and car gy of caesium flu C -760 k	D enthalpy D esium ch uoride (C J mol ⁻¹	Neither I nor II /? MgCl ₂ loride (CsCl) are -760 kJ mol ⁻¹ and CsF) likely to be? D -800 kJ mol ⁻¹
9	Which A The la -650 l A For w greate A	I only h one of the the NaF attice energies cJ mol ⁻¹ resp -620 kJ mol chich of the f est? CaO	B followin B ess (entha ectively. I ⁻¹ following B	II only g has the most e CsI lpies) of rubidiu What is the latt B -720 k g would the diffe	xothermi C m fluorio ice energ J mol ⁻¹ erence be C	Both I and II ic crystal lattice MgF ₂ de (RbF) and ca- gy of caesium flu C -760 k	D enthalpy D esium ch uoride (C J mol ⁻¹ imental a	Neither I nor II /? MgCl ₂ loride (CsCl) are -760 kJ mol ⁻¹ and CsF) likely to be? D -800 kJ mol ⁻¹ and theoretical lattice energies be

Using lithium fluoride as the example, construct a Born-Haber cycle, labelling the cycle with the formulas and state symbols of the species present at each stage.

[6]

The signs between the brackets indicate if you are following the arrow in the diagram (in which case +) or going the opposite way to the arrow (in which case -)